Machine Learning and Data Mining

Ensembles of Learners

Kalev Kask

+

HW4

- Download data from
 - <u>https://www.kaggle.com/c/uci-s2018-cs273p-hw4</u>
 - Note this is not the same as Project1 site
 - https://www.kaggle.com/c/uci-s2018-cs273p-1

Ensemble methods

- Why learn one classifier when you can learn many?
- Ensemble: combine many predictors
 - (Weighted) combinations of predictors
 - May be same type of learner or different

Various options for getting help:

"Who wants to be a millionaire?"

Simple ensembles

- "Committees"
 - Unweighted average / majority vote
- Weighted averages
 - Up-weight "better" predictors
 - Ex: Classes: +1 , -1 , weights alpha:

$$\hat{y}_1 = f_1(x_1, x_2, ...)$$

 $\hat{y}_2 = f_2(x_1, x_2, ...) => \hat{y}_e = \text{sign}(\sum \alpha_i \hat{y}_i)$

• • •

"Stacked" ensembles

- Train a "predictor of predictors"
 - Treat individual predictors as features

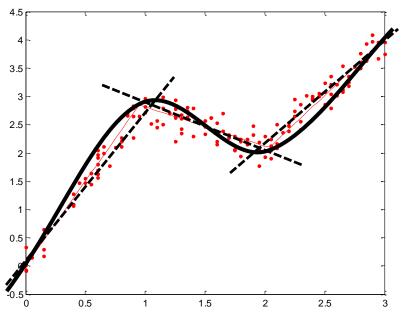
$$\hat{y}_1 = f_1(x_1, x_2, ...)$$

 $\hat{y}_2 = f_2(x_1, x_2, ...) => \hat{y}_e = f_e(\hat{y}_1, \hat{y}_2, ...)$

- Similar to multi-layer perceptron idea
- Special case: binary, f_e linear => weighted vote
- Can train stacked learner f_e on validation data
 - Avoids giving high weight to overfit models

Mixtures of experts

- Can make weights depend on x
 - Weight $\alpha_z(x)$ indicates "expertise"
 - Combine using weighted average (or even just pick largest)



Mixture of three linear predictor experts

Example

Weighted average: $f(x; \omega, \theta) = \sum_{z} \alpha_{z}(x; \omega) f_{z}(x; \theta_{z})$

Weights: (multi) logistic regression $\alpha_z(x;\omega) = \frac{\exp(x \cdot \omega^z)}{\sum_c \exp(x \cdot \omega^c)}$

If loss, learners, weights are all differentiable, can train jointly...

Machine Learning and Data Mining

Ensembles: Bagging

Kalev Kask

+

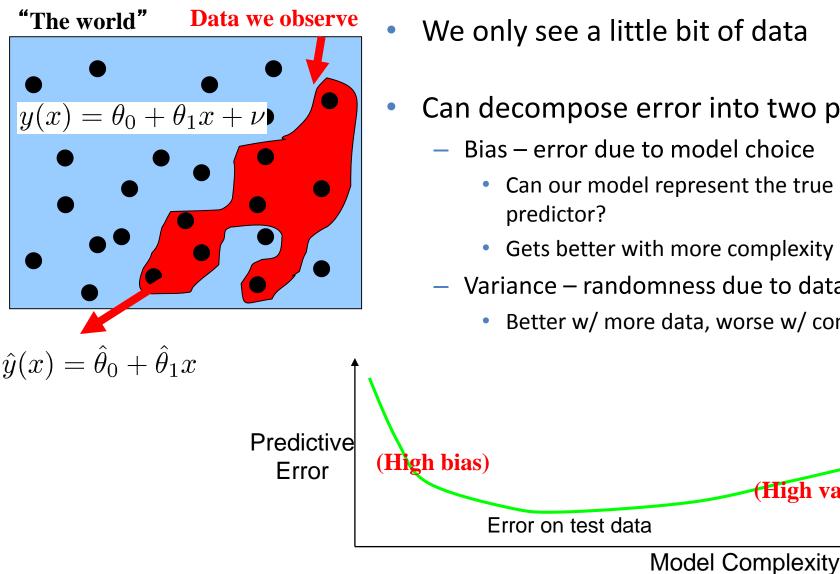
Ensemble methods

- Why learn one classifier when you can learn many?
 - "Committee": learn K classifiers, average their predictions
- "Bagging" = bootstrap aggregation
 - Learn many classifiers, each with only part of the data
 - Combine through model averaging
- Remember overfitting: "memorize" the data
 - Used test data to see if we had gone too far
 - Cross-validation
 - Make many splits of the data for train & test
 - Each of these defines a classifier
 - Typically, we use these to check for overfitting
 - Could we instead combine them to produce a better classifier?

Bagging

- Bootstrap
 - Create a random subset of data by sampling
 - Draw m' of the m samples, with replacement
 - (some variants w/o)
 - Some data left out; some data repeated several times
- Bagging
 - Repeat K times
 - Create a training set of m' < m examples
 - Train a classifier on the random training set
 - To test, run each trained classifier
 - Each classifier votes on the output, take majority
 - For regression: each regressor predicts, take average
- Notes:
 - Some complexity control: harder for each to memorize data
 - Doesn't work for linear models (average of linear functions is linear function...)
 - Perceptrons OK (linear + threshold = nonlinear)

Bias / variance



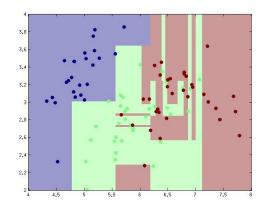
- We only see a little bit of data
- Can decompose error into two parts
 - Bias error due to model choice
 - Can our model represent the true best
 - Gets better with more complexity
 - Variance randomness due to data size
 - Better w/ more data, worse w/ complexity

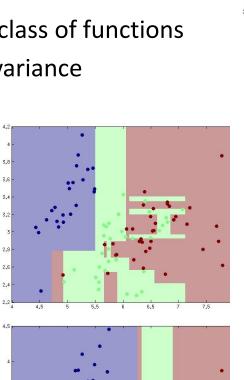
(High variance)

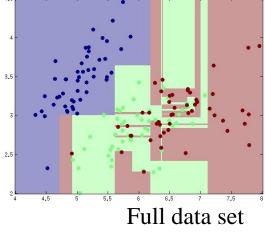
Bagged decision trees

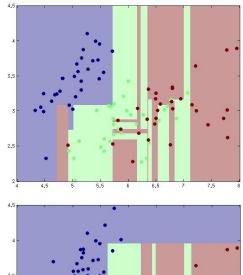
- Randomly resample data
- Learn a decision tree for each
 - No max depth = very flexible class of functions
 - Learner is low bias, but high variance

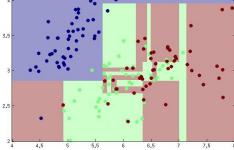
Sampling: simulates "equally likely" data sets we could have observed instead, & their classifiers





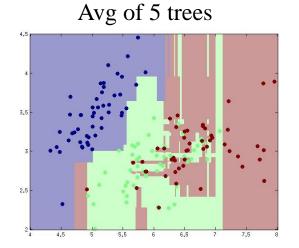




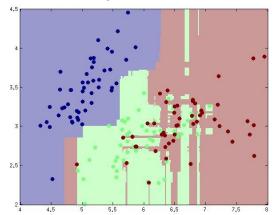


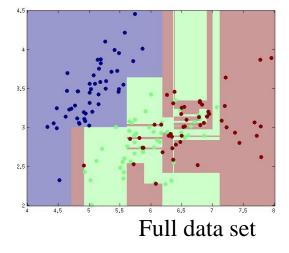
Bagged decision trees

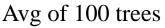
- Average over collection
 - Classification: majority vote
- Reduces memorization effect
 - Not every predictor sees each data point
 - Lowers effective "complexity" of the overall average
 - Usually, better generalization performance
 - Intuition: reduces variance while keeping bias low

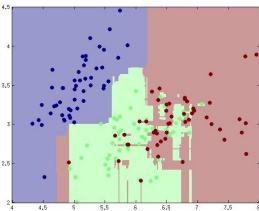


Avg of 25 trees









Bagging in Python

test on data Xtest
mTest = Xtest.shape[0]
predict = np.zeros((mTest, nBag)) # Allocate space for predictions from each model
for i in range(nBag):
 predict[:,i] = classifiers[i].predict(Xtest) # Apply each classifier

```
# Make overall prediction by majority vote
predict = np.mean(predict, axis=1) > 0 # if +1 vs -1
```

Random forests

- Bagging applied to decision trees
- Problem
 - With lots of data, we usually learn the same classifier
 - Averaging over these doesn't help!
- Introduce extra variation in learner
 - At each step of training, only allow a subset of features
 - Enforces diversity ("best" feature not available)
 - Keeps bias low (every feature available eventually)
 - Average over these learners (majority vote)

in FindBestSplit(X,Y):
 for each of a subset of features
 for each possible split
 Score the split (e.g. information gain)
 Pick the feature & split with the best score
 Recurse on left & right splits

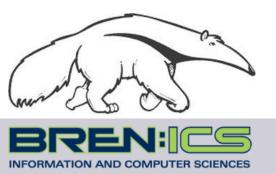
Summary

- Ensembles: collections of predictors
 - Combine predictions to improve performance
- Bagging
 - "Bootstrap aggregation"
 - *Reduces* complexity of a model class prone to overfit
 - In practice
 - Resample the data many times
 - For each, generate a predictor on that resampling
 - Plays on bias / variance trade off
 - Price: more computation per prediction

Machine Learning and Data Mining

Ensembles: Gradient Boosting

Kalev Kask

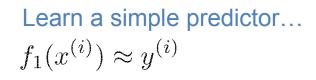


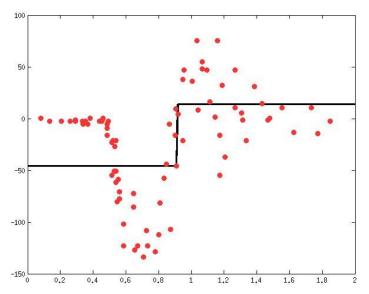
+

Ensembles

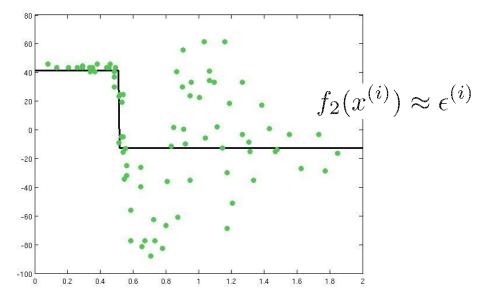
- Weighted combinations of predictors
- "Committee" decisions
 - Trivial example
 - Equal weights (majority vote / unweighted average)
 - Might want to weight unevenly up-weight better predictors
- Boosting
 - Focus new learners on examples that others get wrong
 - Train learners sequentially
 - Errors of early predictions indicate the "hard" examples
 - Focus later predictions on getting these examples right
 - Combine the whole set in the end
 - Convert many "weak" learners into a complex predictor

- Learn a regression predictor
- Compute the error residual
- Learn to predict the residual





Then try to correct its errors $\epsilon^{(i)} = y^{(i)} - f_1(x^{(i)})$



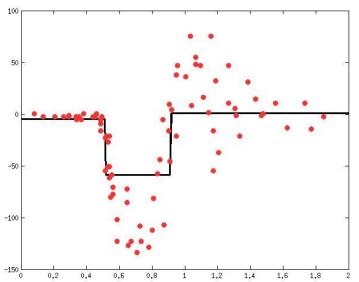
- Learn a regression predictor
- Compute the error residual
- Learn to predict the residual

$$f_1(x^{(i)}) \approx y^{(i)}$$

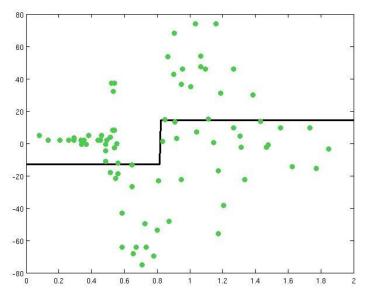
$$\epsilon^{(i)} = y^{(i)} - f_1(x^{(i)})$$

$$f_2(x^{(i)}) \approx \epsilon^{(i)}$$

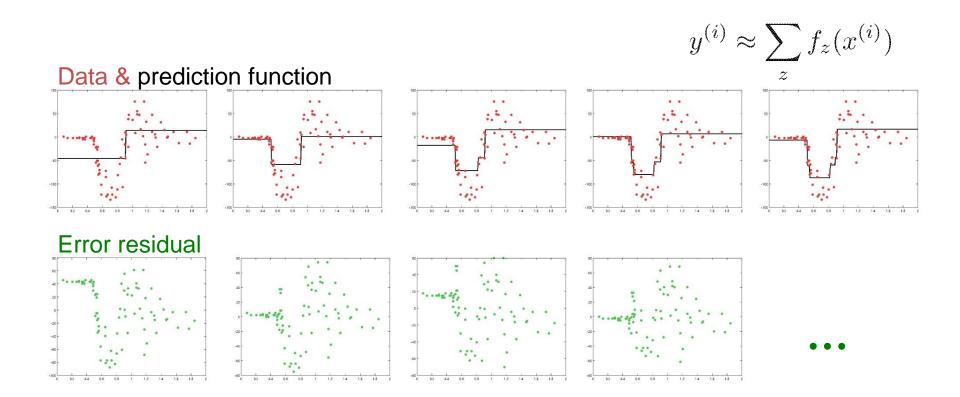
Combining gives a better predictor... $\Rightarrow \quad f_1(x^{(i)}) + f_2(x^{(i)}) \approx y^{(i)}$



Can try to correct its errors also, & repeat $\epsilon_2^{(i)} = y^{(i)} - f_1(x^{(i)} - f_2(x^{(i)}) \dots$



- Learn sequence of predictors
- Sum of predictions is increasingly accurate
- Predictive function is increasingly complex



- Make a set of predictions ŷ[i]
- The "error" in our predictions is $J(y, \hat{y})$
- For MSE: $J(.) = \sum (y[i] \hat{y}[i])^2$
- We can "adjust" ŷ to try to reduce the error
- $\hat{y}[i] = \hat{y}[i] + alpha f[i]$
- $f[i] \approx \nabla J(y, \hat{y})$ = $(y[i]-\hat{y}[i])$ for MSE
- Each learner is estimating the gradient of the loss f'n
- Gradient descent: take sequence of steps to reduce J
- Sum of predictors, weighted by step size alpha

Gradient boosting in Python

```
# Load data set X, Y ...
learner = [None] * nBoost
                             # storage for ensemble of models
alpha = [1.0] * nBoost
                             # and weights of each learner
mu = Y.mean()
                             # often start with constant "mean" predictor
dY = Y - mu
                             # subtract this prediction away
for k in range( nBoost ):
  learner[k] = ml.MyRegressor(X, dY) # regress to predict residual dY using X
  alpha[k] = 1.0
                             # alpha: "learning rate" or "step size"
  # smaller alphas need to use more classifiers, but may predict better given enough of them
  # compute the residual given our new prediction:
  dY = dY - alpha[k] * learner[k].predict(X)
```

test on data Xtest
mTest = Xtest.shape[0]
predict = np.zeros((mTest,)) + mu # Allocate space for predictions & add 1st (mean)
for k in range(nBoost):
 predict += alpha[k] * learner[k].predict(Xtest) # Apply predictor of next residual & accum

Summary

Ensemble methods

- Combine multiple classifiers to make "better" one
- Committees, average predictions
- Can use weighted combinations
- Can use same or different classifiers
- Gradient Boosting
 - Use a simple regression model to start
 - Subsequent models predict the error residual of the previous predictions
 - Overall prediction given by a weighted sum of the collection

Machine Learning and Data Mining

Ensembles: Boosting

Kalev Kask

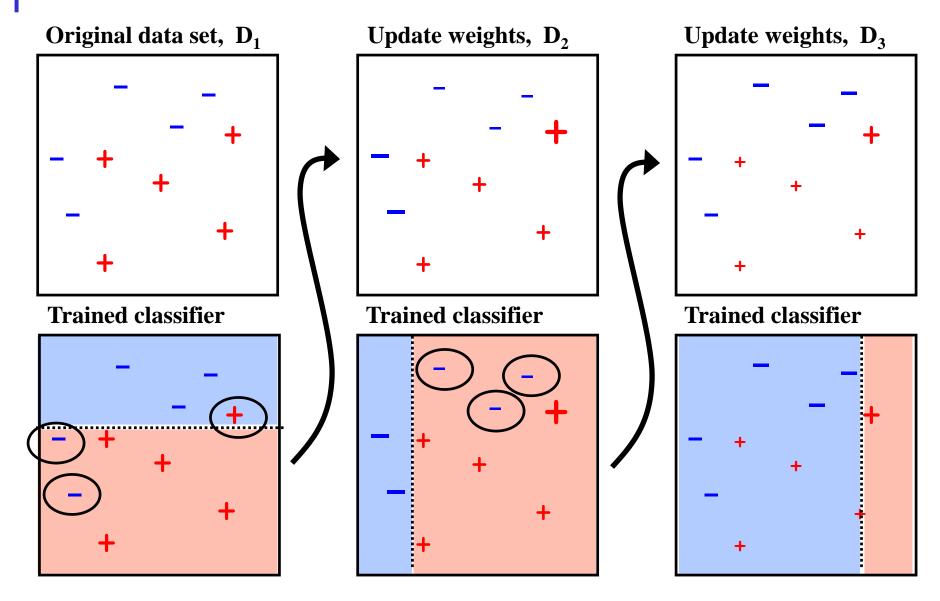
+

Ensembles

- Weighted combinations of classifiers
- "Committee" decisions
 - Trivial example
 - Equal weights (majority vote)
 - Might want to weight unevenly up-weight good experts
- Boosting
 - Focus new experts on examples that others get wrong
 - Train experts sequentially
 - Errors of early experts indicate the "hard" examples
 - Focus later classifiers on getting these examples right
 - Combine the whole set in the end
 - Convert many "weak" learners into a complex classifier

Boosting example

Classes +1, -1



Aside: minimizing weighted error

- So far we've mostly minimized unweighted error
- Minimizing weighted error is no harder:

Unweighted average loss:

$$J(\theta) = \frac{1}{m} \sum_{i} J_i(\theta, x^{(i)})$$

Weighted average loss:

$$J(\theta) = \sum_{i} w_i J_i(\theta, x^{(i)})$$

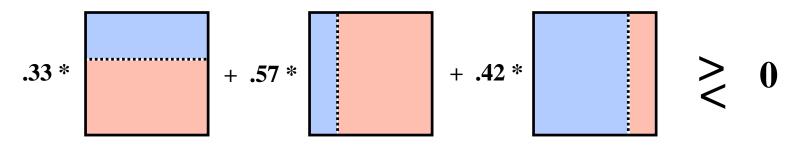
For any loss (logistic MSE, hinge, ...) $J(\theta, x^{(i)}) = \left(\sigma(\theta x^{(i)}) - y^{(i)}\right)^2$ $J(\theta, x^{(i)}) = \max\left[0, 1 - y^{(i)} \theta x^{(i)}\right]$

For e.g. decision trees, compute weighted impurity scores: p(+1) = total weight of data with class +1

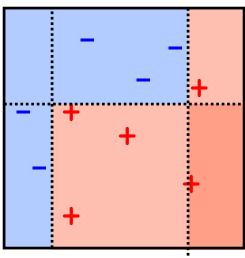
p(-1) = total weight of data with class -1 => H(p) = impurity

Boosting example

Weight each classifier and combine them:



Combined classifier



1-node decision trees "decision stumps" *very simple classifiers*

AdaBoost = "adaptive boosting"

Pseudocode for AdaBoost

Classes {+1, -1}

# Load data set X, Y ; Y assumed +1 / -1	
for i in range(nBoost):	
<pre>learner[i] = ml.MyClassifier(X, Y, weights=wts)</pre>	# train a weighted classifier
Yhat = learner[i].predict(X)	
e = wts.dot(Y != Yhat)	# compute weighted error rate
alpha[i] = 0.5 * np.log((1-e)/e)	
wts *= np.exp(-alpha[i] * Y * Yhat)	# update weights
wts /= wts.sum()	# and normalize them

Final classifier:
<pre>predict = np.zeros((mTest,))</pre>
for i in range(nBoost):
<pre>predict += alpha[i] * learner[i].predict(Xtest)</pre>
predict = np.sign(predict)

compute contribution of each model
and convert to +1 / -1 decision

Notes

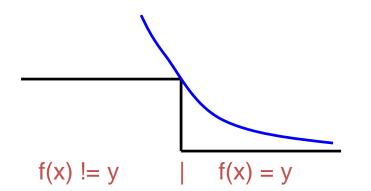
- e > .5 means classifier is not better than random guessing
- Y * Yhat > 0 if Y == Yhat, and weights decrease
- Otherwise, they increase

AdaBoost theory

- Minimizing classification error was difficult
 - For logistic regression, we minimized MSE or NLL instead
 - Idea: low MSE => low classification error
- Example of a surrogate loss function
- AdaBoost also corresponds to a surrogate loss function

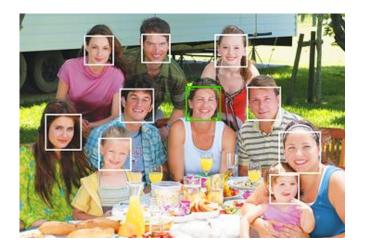
$$C_{ada} = \sum_{i} \exp[-y^{(i)} f(x^i)]$$

- Prediction is yhat = sign(f(x))
 - If same as y, loss < 1; if different, loss > 1; at boundary, loss=1
- This loss function is smooth & convex (easier to optimize)



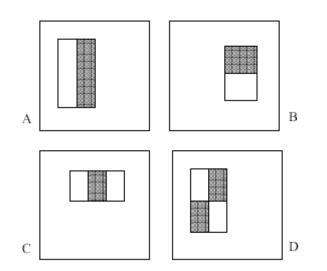
AdaBoost example: Viola-Jones

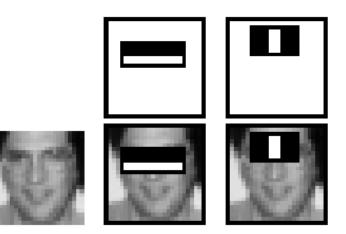
- Viola-Jones face detection algorithm
- Combine lots of very weak classifiers
 - Decision stumps = threshold on a single feature
- Define lots and lots of features
- Use AdaBoost to find good features
 - And weights for combining as well



Haar wavelet features

- Four basic types.
 - They are easy to calculate.
 - The white areas are subtracted from the black ones.
 - A special representation of the sample called the integral image makes feature extraction faster.





Training a face detector

- Wavelets give ~100k features
- Each feature is one possible classifier
- To train: iterate from 1:T
 - Train a classifier on each feature using weights
 - Choose the best one, find errors and re-weight
- This can take a long time... (lots of classifiers)
 - One way to speed up is to not train very well...
 - Rely on adaboost to fix "even weaker" classifier
- Lots of other tricks in "real" Viola-Jones
 - Cascade of decisions instead of weighted combo
 - Apply at multiple image scales
 - Work to make computationally efficient

Summary

- Ensemble methods
 - Combine multiple classifiers to make "better" one
 - Committees, majority vote
 - Weighted combinations
 - Can use same or different classifiers
- Boosting
 - Train sequentially; later predictors focus on mistakes by earlier
- Boosting for classification (e.g., AdaBoost)
 - Use results of earlier classifiers to know what to work on
 - Weight "hard" examples so we focus on them more
 - Example: Viola-Jones for face detection